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Three approaches to one-place addition and subtraction: 

Counting strategies, memorized facts, and thinking tools

 

 

Liping Ma 

 
In many countries, the first significant chunk of elementary mathematics is the same: the 

numerals and addition and subtraction within 20. It has four pieces, which may be connected in 

different ways: the numerals from 1 to 20, computation of 1-place additions and related 

subtractions, additions and subtractions within 20 with 2-place numbers, and the introduction 

of the concept of addition and subtraction. This article will focus on the second piece —

computation of 1-place additions and related subtractions, which I will call ―1-place addition 

and subtraction‖ or ―1-place calculation.‖   

 

Computational skills, in particular, the skills of mentally calculating 1-place additions and 

subtractions, are an important cornerstone for all four operations with whole numbers, 

decimals, and fractions in elementary school. Whether or not students are proficient in 1-place 

addition and subtraction will have a direct impact on their development of all later 

computational skills.   

 

It seems easy to agree on the meaning of ―1-place addition and subtraction‖: addition and 

subtraction with sum or minuend between 2 and 18. Instructional approaches, however, vary. 

There are two main approaches that I have observed in US elementary schools: ―counting 

counters‖ and ―memorizing facts.‖ In this article, I will briefly describe these approaches. A 

third approach, which I call ―extrapolation,‖ I shall describe in more detail.  

 

In discussing instruction, we tend to notice two aspects: ―what to teach‖ and ―how to teach it.‖ 

The aspect of ―how to teach‖ is two-fold—the level of curriculum and that of classroom 

teaching. I will focus on the curriculum level in describing the three instructional approaches to 

1-place computation. Associated with each approach are different learning goals and 

assumptions about learning. These differences raise questions which may be useful for the field 

of elementary mathematics education to consider. At the end of this article, I raise three such 

questions. 
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“Counting counters” and “memorizing facts”: Two approaches often used in the US 

 

Counting counters 

 

The ―counting counters‖ approach focuses on helping students to get the answer for addition 

and subtraction by counting counters. Besides students’ own fingers, in early elementary US 

classrooms one can see various kinds of counters: chips of different shapes and colors, blocks 

of different sizes and materials, counters shaped like animals or other things that students like. 

Also, the dots on the number line posted on the classroom wall are often used as counters.  

 

In the “counting counters” approach, the main task of instruction is to guide students to 

improve their counting strategies.  As we know, computing by counting is the method children 

use before they go to school, it’s their own calculation method, and the counters most often 

used are their fingers. As research points out, the more experience children get with 

computation, the more they improve their strategies.
i
 A concise summary of the strategies that 

children use is given in Math Matters (Chapin & Johnson, 2006, pp. 63–64). The process of 

optimizing addition strategies goes from counting all, to counting on from first, to counting 

from larger. For example, to calculate 2 + 5 = ? by counting all: show 2 fingers and show 5 

fingers, then count all the fingers, beginning the count with 1. A more advanced strategy is 

counting on from first. Instead of counting from 1, a child calculating 2 + 5 = ? “begins the 

counting sequence at 2 and continues on for 5 counts.” In this way, students save time and 

effort by not counting the first addend. An even more advanced strategy is counting on from 

larger: a child computing 2 + 5 = ？“begins the counting sequence at 5 and continues on for 2 

counts” In this way, students save even more time. Because we only have ten fingers, the 

strategy of counting all can only be used for addition within 10. But the other two strategies 

can be used to calculate all 1-place additions. There are also counting strategies for subtraction: 

“counting down from,” “counting down to,” “counting up from given” (Chapin & 

Johnson, 2006, p. 64). 
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Figure 1. Student using counters, student using fingers, counters used in school, grade 2 

textbook. 

 

Counting strategies can be used to solve all 1-place additions and subtractions. However, the 

ability to use these strategies does not ensure that students develop the ability to mentally 

calculate 1-place additions and subtractions. The more proficient students become with 

counting strategies, the more they likely they are to develop the habit of relying on these 

methods. This habit may last for a long time. Thus, these methods may hinder the growth of 

the ability to calculate mentally. And, unless elementary mathematics education decides to give 

up the goal of teaching students the algorithms for the four operations, the ability to calculate 

mentally is necessary. Imagine that when students are doing multi-place addition and 

subtraction or multiplication and division, they still rely on counting fingers to accomplish 

each step of addition and subtraction. The whole process will become fragmented and lengthy, 

losing focus. 

 

Memorizing facts 

 

The goal of memorizing facts is to develop students’ capability to calculate mentally. The 

content that students are intended to learn includes 200 ―number facts.‖ As we know, the ten 

digits of Arabic numbers can be paired in a hundred ways. The hundred pairs with their sums 

(0 + 0 = 0, 0 + 1 = 1, , , , , 9 + 9 = 18) are called the ―hundred addition facts.‖ Corresponding to 

the ―hundred addition facts‖ are ―the hundred subtraction facts‖ (0 − 0 = 0, 1 − 0 = 1, . . . , 

0 = 9 – 9). These two hundred facts, which cover all possible situations, are called ―number 

facts.‖ If one can memorize all these facts, then one is able to do mental calculations with 1-
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place numbers. In this approach, the instructional method is to ask students to memorize the 

two hundred facts.   

 

The number facts are shown to students with counters, then students are drilled. Drills are done 

in various ways. “Mad Minute” is an instructional practice often seen in US classrooms. A 

display shows 30 or 40 problems and students are asked to complete as many problems as they 

can in one minute. Each problem is written with the numbers in columns—similar to the form 

used in the algorithms for multi-place computations. Each sheet of drills may have a particular 

characteristic: all addition problems, all subtraction problems, or a mixture of the two. The 

numbers in the problems may lie within a particular range. For example, the left side of Figure 

2 shows addition and subtraction problems within 10. There are also more interesting drill 

sheets (shown on upper right of Figure 2). A newer, more efficient variation of this method is 

to group related facts together, for example, grouping addition facts with the sum 7, by forming 

a “7-train” for students to memorize (shown on lower right of Figure 2).  

 

 

Figure 2.  

As a way to develop students’ ability to do 1-place calculations mentally, the rationale for the 

memorizing facts approach is straightforward. However, its two elements, memorizing and 

considering 1-place calculation as 200 facts, have some defects with respect to activating 

students’ intellects.  

 

First, although memorizing is an important intellectual function, children are considered to be 

especially good at memorizing. However, if students only memorize, then other types of 
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students’ intellectual activities are neglected. Moreover, the task of memorizing items like 

number facts is more complicated than often thought. The memory of one item may interfere 

with the recall of another.
ii
   

 

Second, when we consider 1-place calculation as 200 independent facts, the relationship and 

interdependence of these facts is neglected. Their differences in terms of difficulty and 

importance are also neglected. If they are 200 separate learning tasks, then there is no mutual 

support among the tasks. For example, if we memorize 4 + 3 = 7 and 3 + 4 = 7 separately, there 

is no support between these two learning tasks.  

 

Recently, improvements have occurred in some US textbooks. They use the approach of 

grouping facts into ―fact families,‖ for example, grouping 3 + 4 = 7, 4 + 3 = 7, 7 − 3 = 4, 

7 − 3 = 4, hoping that the relationships shown among the facts can improve efficiency in 

memorizing. However, the relationships shown are limited. For example, in the 7-train in 

Figure 2, 1 + 6 and 6 + 1 are put in the top and bottom of the same car. The 6 + 1 in the bottom 

car, which is easier for students, can support the task of learning the 1 + 6 in the top car. 

However, can learning 6 + 1 also support learning 7 − 6 or 7 − 1? Can it support 2 + 5? Or 

3 + 4? Or 9 + 7? Or 16 − 7? If we consider memorizing facts as the goal of instruction, we will 

not make an effort to lead students to the deeper relationships that underlie the facts or to 

activate intellectual capacities other than memorizing.   

 

Extrapolating: Using thinking tools to find unknown from known 

 

The main idea of the counting approach is to allow students to use their hands—in particular, 

to use their fingers as counters and by counting to get the answer for a 1-place addition or 

subtraction calculation. The memorizing facts approach draws on memorization—through drill 

to memorize the 200 number facts. However, there is another approach to teaching 1-place 

computation—to let students “use their minds” to develop their capacity for mental 

computation. Because “using minds” involves inferring unknown from known, I call this 

approach “extrapolation.” It is used in China and some other countries around the world.
iii

 

 

Chinese elementary mathematics teachers often tell their students: “Use your little minds.” 

As they learn 1-place calculation, students are introduced to thinking tools. “Using minds” 

requires students to use these thinking tools to find an answer that they didn’t know before. In 

other words, students don’t depend on counters, in the form of fingers, objects, or textbook 

illustrations to get the answer. Instead, they use their own minds to figure out the answer.  

 

The thinking tools that first graders use to extrapolate are mainly forms of ―theoretical 

knowledge‖ in elementary mathematics, such as the basic knowledge of quantity (for example, 

the combination of 2 and 9), the knowledge of the relationship of quantities (subtraction as the 

inverse operation of addition), the knowledge of patterns in calculation (commutative law, 

compensation law, associative law, and basic understanding of notation, for example, base-10 

notation for numbers less than 18 and the composition of 10). By using these thinking tools, 

first graders can increase their computational capabilities, step by step, and eventually master 

1-place mental calculation.  
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How “thinking tools” can help students to extrapolate:  

The three kinds of calculation skills and the four stages of learning 

 

Extrapolation seems to be markedly more sophisticated than counting counters and 

memorizing facts. That may be due to the learning tasks involved. If the counting and 

memorizing facts approaches each have one learning task, then the extrapolation approach has 

two: to learn thinking tools while learning calculation skills.  

 

1-place addition and subtraction involves three computational skills: 

 

 A. addition and subtraction with sum or minuend between 2 and 9. 

 

B. addition and subtraction with sum or minuend of 10. 

 

C. 1-place addition and subtraction with sum or minuend between 11 and 18. 

 

In the extrapolation approach these three skills are addressed in four stages. The first two 

stages of learning address skill A: calculation with sum or minuend between 2 and 9. The third 

stage addresses skill B and the fourth stage addresses skill C.  

 

In terms of calculation skill, each stage includes new content. In terms of number range, each 

stage is cumulative, including the earlier numbers. For example, the skill addressed at Stage 2 

is ―addition and subtraction with sum or minuend between 6 and 9‖ but the number range is 1 

to 9, including the numbers from the previous stage. Please see the following table. 

 

Table 1. The three calculation skills and the four instructional stages 

 

Three calculation skills 
Four instructional stages 

 

content 

 

range of 

numbers 

A. addition and subtraction with sum or 

minuend between 2 and 9.  

1. addition and subtraction with numbers 

between 1 and 5. 

1–5 

2. addition and subtraction with numbers 

between 6 and 9 

1–9 

B. addition and subtraction with sum or 

minuend of 10. 

3. addition and subtraction with sum or 

minuend of 10. 

1–10 

C. 1-place addition and subtraction with 

sum or minuend between 11 and 18. 

4. 1-place addition and subtraction with sum 

or minuend between 11 and 18.  

1–20 

 

The first of the four stages is based on the computational capacities that students bring to 

school. Each later stage is based on the capacities developed at prior stages. In the first part of 

this section, I discuss the kinds of thinking tools that are usually introduced in each of the four 

stages and the reasons for doing so. This discussion is based on my own experience and 

knowledge of teaching elementary mathematics in China, and and the analysis of seven 

Chinese textbooks published between 1988 and 2008. In the second part, I draw on examples 

from a Russian first grade textbook to show how these thinking tools can be introduced to 

young students. 
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Stage 1: Introducing the first thinking tools, drawing on the computational capacity that 

students already have 

 

The first stage is ―Calculations with numbers between 1 and 5.‖ During recent years, attention 

has been given to the idea that before they attend school, children already have developed these 

strategies, allowing them to do some simple calculations and has documented the systematic 

order in which these strategies develop. However, another important computational capability 

of children—their ability to mentally calculate small quantities—seems to not get enough 

attention from mathematics education researchers. This ability is the foundation for the 

extrapolation method.  

 

Create a dialogue environment in which children are relaxed, happy, and willing to actively 

communicate with you, in their own words, about their everyday life, and make up word 

problems with quantities within 3, for example:  

 

 If your dad gives two candies and your mom gives you one, how many did you get in 

all? 

 

 You have three candies, I have one. Who has more? How many more? 

 

 You had three candies and ate two. How many candies are left? 

 

You will find that children will tell you the correct answer immediately and don’t need to use 

fingers at all.  

 

That children can fluently answer these questions shows they know the quantities, 1, 2, and 3 

very well and already have:  

 

1. the primary concept of addition and subtraction—being able to judge which operations 

to use in certain circumstances; 

 

2. the skill of mental calculation within 3; 

  

3. the concept of ―quantity set‖—are able to consider more than one unit (2 or 3) as one 

quantity;  

 

4.  the concept of the composition of number—have understood that 3 is composed by 2 

and 1.  

 

These understandings and capabilities are the seeds of their later mathematical thinking and 

also the footholds of the thinking tools used in the extrapolation approach.  

 

The understanding of quantities within 3 and ability to calculate within 3 that children already 

have before attending school should come from the natural human ability to immediately 

perceive these quantities. The quantities 1, 2, and 3 are usually called perceivable quantities. 
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Almost everyone can recognize these without counting.
iv

 This ability can be observed in 

kindergarten students.
v
  

 

In fact, first grade teachers may even notice that the recognition of numbers 4 and 5, and 

computation within 4 and 5 are easy for first graders. In Children's Counting and Concepts of 

Number, there is an example of a child of 2 years and 10 months who commented, ―Two and 

two make four‖ (Fuson, p. 19). That may have occurred because in everyday life children have 

many chances to become familiar with these quantities—every time they use their own hands, 

they will see the five fingers, four on one side and the thumb on the other. They have seen 

many times that 4 and 1 make 5, as well as the other combinations (for example, 2 and 2, 3 and 

1, 3 and 2). For many people, 4 is a perceivable quantity as well as 3, 2, and 1.  

 

In summary, calculation with numbers 1 through 5 seems to be already mastered by most 

students before they begin first grade. In this sense, ―Calculations with numbers between 1 and 

5‖ is a review.  

 

However, this ―review‖ still carries significant tasks. These tasks are to build new concepts, 

based on the knowledge of quantity and computational skill that students already have. 

 

First, help students start to build the concept of abstract number, based on the concept of 

concrete number that they already have. Before they begin school, for most children ―number‖ 

is ―concrete number‖—one person, two cards, three candies. What they compute are also 

concrete numbers. But, what is computed in mathematics are abstract numbers. Therefore, 

students need to be helped to make the transition from the concrete numbers that they are 

familiar with—3 people, 3 cards, 3 candies—to the abstract number 3.
vi

  

 

Second, to help students learn to use symbols to represent the quantities they already know, not 

only to build the concept of 3, but also to learn to use the numeral ―3‖ to represent it. This is 

also an intellectual task.  

 

Third, based on ―3 is composed by 2 and 1‖ which students already know, further review ―4 is 

composed by 2 and 2‖ and ―4 is composed by 3 and 1,‖ ―5 is composed by 3 and 2,‖ ―5 is 

composed by 4 and 1‖ to help students build the concept ―a number is composed of two 

smaller numbers‖ and further to notice the relationship between big and small numbers: 

because 3 is composed by 2 and 1, therefore 2 + 1 = 3; because 5 is composed by 3 and 2, 

therefore 3 + 2 = 5. Because students are familiar with the numbers from 1 to 5, this kind of 

understanding can be easily established. These understandings are thinking tools prepared for 

use at the next stage.  

 

Fourth, help students to represent the calculations that they already know with equations. 

Based on what students already know—―if Dad gives me 2 candies and Mom gives me 1, then 

I will have 3 candies‖—let them learn to express this calculation in the mathematical form ―2 + 

1 = 3.‖ 

 



Draft, June 21, 2011   9 

 

 

Fifth, to help those students who haven’t mastered addition and subtraction with sums of 4 or 5 

to master this skill. Because of differences in family background or everyday environment, 

some students may not yet be comfortable in calculating these sums.  

 

In summary, the task of teaching the first stage ―Calculations with numbers between 1 and 5‖ 

is to take stock of the knowledge of quantities that students already have. Through this 

stocktaking, students develop a clearer understanding of this knowledge, at the same time 

establishing a conceptual foundation for their future mathematical learning. At this stage, there 

is no extrapolation. However, the learning tasks of this stage draw on students’ prior 

knowledge in order to build a foundation for extrapolation in later stages.  

 

Stage 2: Learn how to extrapolate with thinking tools 

 

The second stage is ―addition and subtraction with sum or minuend between 6 and 9.‖ In 

contrast with the numbers from 1 to 5, the numbers 6, 7, 8, 9 are much less familiar to students. 

Thus, mental calculation with these numbers starts to feel harder to handle for students, 

although this is not uniform. Facing the calculations in this stage, many students unconsciously 

use their fingers to help. At this moment, instruction comes to a fork in the road: letting 

students acquire the method of counting on fingers or leaving them to use a new method: using 

mathematical thinking tools to extrapolate from known to unknown. In other words, what aid 

should students use: fingers as counters or mathematical thinking tools? Extrapolation chooses 

the latter. The five teaching tasks accomplished at the previous stage have prepared students to 

learn extrapolation at this stage.  

 

The difficulty at this stage is that students are not familiar with the four numbers, 6, 7, 8, 9. To 

dissipate this difficulty, the prior stage prepared students in two ways. First, based on students’ 

prior knowledge that ―2 is composed by 1 and 1‖ and ―3 is composed by 2 and 1,‖ by revealing 

that ―4 is composed by 3 and 1,‖ ―4 is composed 2 and 2,‖ and ―5 is composed by 3 and 2,‖ the 

concept of ―a big number is composed of smaller numbers‖ was established. Second, from the 

tasks they did at the previous stage, students became more familiar with the numbers from 1 to 

5. Thus, although students are not familiar with 6, 7, 8, 9, they have established the concept of 

a large number is composed of smaller numbers, and they are very familiar with the smaller 

numbers that compose 6, 7, 8, 9. They have a foundation for understanding these larger 

numbers, lessening the initial difficulty. For example, a student might feel that 6 is unfamiliar 

and hard to comprehend. However, when he or she sees that 6 is composed of 5 and 1, of 4 and 

2, and of 3 and 3, because the numbers from 1 to 5 are already familiar, 6 becomes less 

unfamiliar. The student is one step closer to comprehension of 6.  

 

Also, students already learned that because 3 is composed of 2 and 1, therefore 2 + 1 = 3. Thus, 

when they see 6 is composed of 5 and 1, 6 is composed of 4 and 2, 6 is composed of 3 and 3, 

without counting, they can extrapolate that 5 + 1 = 6, 4 + 2 = 6, 3 + 3 = 6. Extrapolation based 

on the composition of numbers relies on the comprehension of previous numbers. At this stage, 

each new larger number is treated separately, in increasing order: sums and minuends of 6, 

then of 7, 8, and 9.  
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The commutative law of addition is also a useful thinking tool for extrapolation. Generally, 

adding a small number to a large number is easier than adding a large number to a small 

number. For example, a student who doesn’t feel that it’s hard to calculate 5 + 2 may feel it’s 

hard to calculate 2 + 5. However, if the student knows the commutative law of addition, he or 

she will be able to extrapolate 2 + 5 = 7 from 5 + 2 = 7 which was already known. Another 

example: adding 1 is not difficult for students at all. Therefore, 5 + 1, 6 + 1, 7 + 1, 8 + 1, 9 + 1 

will feel very easy. But, calculating 1 + 5, 1 + 6, 1 + 7, 1+ 8 is not that easy. By knowing the 

commutative law of addition, students can draw on easy calculations to do harder ones.  

 

Also, we know that subtraction is harder than addition. For example, 9 – 2 is harder than 7 + 2. 

However, if students understand that subtraction is the inverse operation of addition, that 

subtraction is to find an unknown addend, then they can extrapolate the result of subtraction 

from knowledge of a related addition—for example, extrapolate 9 – 2 = 7 from 7 + 2 = 9. In 

China and some other countries, addition and subtraction are usually taught at the same time. 

Chinese teachers usually remind students ―When doing subtraction, think about addition.‖ This 

encourages students to support the learning of subtraction by using computational skills for 

addition that they have already mastered or find easier to use.  

 

Leading students to observe the compensation law of addition and its application to 

subtraction can also promote students’ ability to extrapolate. For example, 6 + 1 = 7 is easy for 

students. Based on compensation law of addition, from 6 + 1 = 7, students can extrapolate 5 + 

2 = 7, 4 + 3 = 7, also extrapolate 6 + 2 = 8, 6 + 3 = 9, . . . Based on the application of the 

compensation law of subtraction, from 8 − 1 = 7, students can extrapolate the solutions of 

8 − 2 = ?, 8 − 3 = ?, 8 − 4 = ?, 8 − 5 = ?, and so on. 

 

In summary, the composition of a number, the commutative law of addition, subtraction as the 

inverse operation of addition, and the compensation laws of addition and subtraction are all 

thinking tools that students can use when they encounter obstacles at this stage. Several of 

these thinking tools can be used together so that students know how to use different approaches 

to solve the same problem. Students can also choose a favorite tool or approach to solve a 

problem. In brief, with the help of thinking tools, at this stage it is possible for students 

calculate mentally without counters. 

 

Compared with the counting approach which also depends on students finding the solution of 

addition and subtraction problems, the ―disadvantage‖ of the extrapolation approach is that it 

requires more time and intellectual effort. The counting approach draws on strategies that 

students already know, therefore, the time needed for instruction is shorter (mainly to help 

some students to replace lower-level strategies with more advanced ones, e.g., replacing 

counting all with counting from first). The extrapolation approach needs not only preparation 

at the previous stages, but also requires time to introduce new thinking tools at each stage.  

 

However, the extrapolation approach has advantages that the counting approach does not have: 

 

 Learning is more robust. Whether in terms of understanding the numbers 6, 7, 8, 9, or 

addition and subtraction with any of these numbers as sum or minuend, after students 

have actively participated in computation with different strategies, they get a deep 
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impression and develop a solid mastery, finding these sums and differences easy to 

learn by heart. In contrast, students using counting strategies are less likely to learn 

these sums and differences by heart.  

 

 Once students finish the mental calculation tasks at this stage, they stop having the 

impulse to count their fingers when calculating. They have not only learned additions 

and subtractions with numbers within a certain range, but more importantly, have 

started to develop particular approaches for mental calculation, initiated the habit of 

mental calculation, and have gained confidence with it.  

 

 At the beginning of first grade, students get exposed to and practice the method of 

using thinking tools to extrapolate an unknown solution from prior knowledge. This 

perspective—using thinking tools to find the unknown from the unknown—initiates a 

lasting attitude toward learning and mathematics.  

 

Due to these three features, the learning at this stage becomes a foundation for future 

learning—the foundation for the next stage and successive stages as well as the foundation for 

all of elementary mathematics learning.  

 

Stage 3: Numeral system and the composition of ten 

 

Because of the special role that 10 plays in the base-10 system, this number is important 

enough to have a separate learning stage. This number is important conceptually and with 

respect to calculation.  

 

Conceptually, 10 is the first 2-place number that students learn. It is also the first time they are 

exposed to positional notation, where a numeral’s position indicates the quantity that it 

represents.  

 

In terms of computational skills, the composition of 10 from pairs of numbers plays a crucial 

role in students’ mastery of addition with composing and subtraction with decomposing.  

 

The five compositions of 10 (9 and 1, 8 and 2, 7 and 3, 6 and 4, 5 and 5) are hard to get into 

students’ heads via rote learning. Two things will help students extrapolate at this stage. 

Comprehension of the numbers from 1 to 9 and the thinking tools, both of which were acquired 

at the two previous stages. Making a ten will become a thinking tool used for extrapolation at 

the next stage.   

 

Stage 4: Deepening the knowledge of numeral system and introducing associative law of 

addition 

 

―1-place addition and subtraction with sum or minuend between 11 and 18,‖ also known as 

―addition with carrying and subtraction with borrowing within 20,‖ is a foundation needed for 

addition and subtraction with whole numbers and decimals. If the learning task of this stage is 

not well accomplished, students will not be able to master the algorithms for the four 

operations. However, for first graders the calculations associated with this stage are hardest. 
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On the one hand, the numbers involved are large, so large that they are beyond what students 

can comprehend. On the other hand, the notation involved is positional notation, involving the 

abstract concept that the place of a numeral changes its value. Indeed, the difficulty of this 

stage is an intellectual height that most first graders are not able to scale in one attempt. 

However, at the previous three stages, instruction led students to use extrapolation to climb, 

step by step, dissipating the difficulties of these stages.  

 

At this stage, along with the knowledge gained at the first three stages, extrapolation requires 

two more thinking tools: understanding of the meaning of the numerals from 11 to 20, based on 

positional notation, and the associative law.   

 

With these tools, students can solve the problems of this stage, using their minds, without 

fingers or other counters. For example, based on the knowledge that students already have, they 

can tell that the answer for 9 + 2 = ? will be larger than 10. But, what is the exact number? By 

understanding the associative law and by knowing the composition of 9 and 2, they can separate a 

1, which with 9 composes a ten, from 2; make a ten, with 1 remaining. Based on positional notation, 

one ten and one one is written as 11. Therefore, 9 + 2 = 11. From this, by using the commutative 

law and subtraction as the inverse operation of addition, students can extrapolate 2 + 9 = 11, 

11 − 2 = 9, 11 − 9 = 2. Using the same idea, they can extrapolate solutions for all the problems 

of this stage.  

 

Moreover, once they use the associative law to find a solution, students can also use the 

compensation law to extrapolate further additions and subtractions. For example, from 

9 + 2 = 11, they can extrapolate 9 + 3 = 12, 9 + 4 = 13, 9 + 5 = 14, 9 + 6 = 17, and so on. Each 

of these equations, with extrapolation, generates another group of equations. The thinking tools 

and computational skills that students have already gained prepare them to use several ways to 

extrapolate.  

 

When the learning of this stage is accomplished, first graders’ capacity for mental calculation 

with 1-place numbers has been achieved. This capacity will contribute to their learning to use 

algorithms for the four operations with multi-place numbers. Of course, future calculations will 

reinforce this capacity.   
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Overview of the thinking tools 
 

The extrapolation approach just described can help students develop the capacity to calculate 

mentally with 1-place numbers, without counters, as used in China and some other countries. 

However, this cannot be done instantly, it requires sustained effort from students and teachers 

for about 20 weeks.
vii

  

 

Figure 3 shows how the various thinking tools are introduced over four stages. The dotted lines 

separate the four stages. 

 
 

 

 

 

 

 

        Associative law of 

addition  

       The meaning of the numerals 11–20  

      Composition of 10 and positional notation 

     Compensation law of addition  

    Subtraction as the inverse operation of addition 

   Commutative law of addition 

  Names of the quantities in an equation 

 Addition and subtraction equation and symbols 

Composing a number  

 

Figure 3. Thinking tools introduced during the four stages 

 

In Figure 3, we see that in the process of developing the capacity of mental computation the 

extrapolation approach leads students to climb nine steps. The instructional content of these 

steps is thinking tools needed for extrapolation or preparation for the introduction of a thinking 

tool. Except at the first stage, the thinking tools introduced at a given stage are used at that 

stage for the learning tasks of that stage and all later stages. Moreover, these thinking tools are 

useful for not only 1-place addition and subtraction, but will be used throughout elementary 

mathematics.   

 

 

Sum or minuend 
10 

Stage 3 

 

Sum or minuend 11–18 

Stage 4 

 

Sum or minuend 6–9 

Stage 2 

 

Computations: 1–5 

Stage 1 

 

 

1-place addition and subtraction 
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How to introduce “thinking tools” to first graders: 

Examples of being intellectually honest and learner-considerate at same time  

 

The next problem is: How can thinking tools such as the commutative law, the idea of inverse 

operation, and the associative law be introduced to students at the beginning of first grade? In 

this section, we will illustrate how this can be done with examples from the first grade Russian 

textbook translated by the University of Chicago School Mathematics Project (Moro et al., 

1980/1992). In aspects such as when to and how to introduce the thinking tools, the Russian 

arrangement differs slightly from the Chinese, but the basic idea of the extrapolation approach 

is the same. 

 

The lessons in the Russian textbook can be grouped in two main categories: Introducing 

concepts (along with exercises), exercises only. The examples of lessons that follow, which 

introduce thinking tools, all belong to the first category. These lessons have three sections: title, 

introduction of new concept, related exercise problems.  

 

The titles of lessons that introduce thinking tools are usually not the names of those thinking 

tools but the key words describing the learning task of the lesson. For example, the lesson that 

introduces the commutative law of addition is called “Interchanging Addends” and the lesson 

that introduces subtraction as the inverse operation of addition is called “How to Find an 

Unknown Addend.” 

 

The section that introduces the new concept usually combines one or more pictures and 

equations. The pictures have themes familiar to students, accompanied by appropriate 

equations. The quantities in the pictures and equations are usually small numbers that students 

already know which have been addressed in previous stages.  

 

The exercise sections are usually composed of several groups of exercises that increase in 

difficulty within each group and from group to group. The problems have different forms, such 

as equations, pictorial problems, and word problems. To understand a concept, one needs to 

use it: The exercises allow students to apply the new ideas that they have just learned and 

deepen their understanding.  

 

The first two of the following six examples are initial segments of lessons. The remaining 

examples are entire lessons. (The example of the compensation law is not from the Russian 

textbook but data collected from a Chinese first grade classroom.) 

 

Addition and subtraction equations and associated symbols 

 

Before they enter school, students can perceive quantities and have preliminary concepts of 

addition and subtraction. Introducing the mathematical representations of these concepts is the 

first step in learning mathematics. The following lesson introduces addition and subtraction 

equations. In earlier lessons, students have learned to use the Arabic numerals 1, 2, 3.  
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The title of the lesson is “+, –, =”—the symbols needed to connect numbers to make addition 

and subtraction equations. The section for introducing the new concept is composed of three 

pairs of pictures, each pair accompanied by an equation. The pictures show objects that are 

familiar to students. The addition and subtraction equations “1 + 1 = 2,” “2 + 1 = 3,” 

“2 − 1 = 1 look very simple. However, they are expressed in the standard notation used 

throughout the world, which is the result of centuries of notational evolution.
viii

 By using the 

notation and form shown in these equations, students can express their own mathematical 

knowledge in a way that allows them to communicate with the rest of the world.   

 

What students learn in this lesson is only the format for mathematical expressions. There seems 

to be no new conceptual content. However, students still make significant intellectual progress. 

To go from the everyday “two pieces of cake and one piece of cake make three pieces of cake” 

to the mathematical equation “2 + 1 = 3” involves two intellectual leaps. One is from concrete 

numbers to abstract number. The other is from everyday language to the mathematical 

language used by the rest of the world.  

 

Another meaningful arrangement in the lesson that students might not notice: when they first 

encounter addition and subtraction equations, the two operations occur in the same lesson. In 

the previous lessons on addition and subtraction, these concepts occurred independently. In this 

lesson, a connection between the two operations is unobtrusively represented. It is a 

preparation for later revealing the common quantitative relationship that underlies addition and 

subtraction. 

 

Figure 4. (Moro et al., 1980/1992, p. 9) 
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The names of quantities in addition equations 

After students get familiar with addition and subtraction equations, they are introduced to the 

names of the quantities in these equations. Figure 5 shows the introduction of new concept 

section of the lesson that introduces the names of quantities in addition equations. (The lesson 

title is part of this section as shown in the figure.) 

 
A combination of pictures and equations and text introduces the names of the two different 

types of quantities in an addition equation—addend and sum—helping students to abstract the 

general notion of ―addend plus addend equals sum‖ from their understanding of specific 

addition equations: 3 + 2 = 5, 2 + 2 = 4, 2 + 1 = 3, . . . 

 

Introducing students to the names of the quantities in addition equations serves two goals, one 

short-term and one long-term. The long-term goal is to lead students to comprehend the 

quantitative relationship that underlies all four operations. The short-term goal is to prepare 

students for the introduction of the thinking tools for 1-place addition and subtraction.  

 

Commutative law of addition 

 

The commutative law can be used as the first thinking tool for students to learn extrapolation. 

The following lesson (Moro et al., 1980/1992, p. 51) introduces the commutative law at the 

stage of ―addition and subtraction with sum and minuend from 1 to 9.‖ 

 

Figure 5. (Moro et al., 1980/1992, p. 38) 

 

Figure 6. (Moro et al., 1980/1992, p. 51) 
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The title of the lesson is “Interchanging Addends.” 

 

The section that introduces the new concept depicts an everyday scene that students might 

encounter, accompanied by two equations 2 + 1 = 3 and 1 + 2 = 3. In this section, students don’
t need to calculate. Their learning task is to observe and discuss the new concept, guided by the 

teacher.  

 

The exercise section includes two groups of problems related to the concept just introduced. 

The first group of problems leads students to notice that the phenomenon illustrated by the top 

picture also applies to other numbers: when addends are interchanged, the sum does not change. 

From the pictures, students can clearly see why there is such a pattern. The second group of 

exercises are calculations. Students are supposed to extrapolate the solution for each lower 

equation from the one above it, based on the pattern that they just noticed. This is also a chance 

for students to check the validity of the pattern they observed. 

 

Eventually, after all these intellectual activities, the lesson presents the statement of the 

commutative law of addition. By learning the commutative law, students acquire a thinking 

tool that can be used for extrapolation. This tool will be used mainly to extrapolate the sum of a 

small number and a large number from the sum of the large number and the small number. On 

later pages of the textbook (pp. 52, 53, 54), many groups of exercises involve finding the sum 

of a small number and a large number, allowing students to use the commutative law to 

extrapolate the sum, and appreciate the convenience of this strategy.  

 

In the textbook, the thinking tools for calculation at later stages are usually introduced by 

pictorial problems involving numbers from previous stages, with which students are already 

familiar. For example, although the lesson above occurs at the second stage, the section that 

introduces the new concept uses numbers from the first stage. In the exercise section, students 

can use the new concept to solve problems with numbers at the second stage. This approach 

has several advantages:  

 

1. the smaller numbers reduce the cognitive load of calculation, allowing students to 

focus on the new concept; 

  

2. effective use of the knowledge that students already have to support the acquisition of 

new knowledge;  

 

3. utilizing knowledge that students already have allows them to see new features of that 

knowledge that deepen their understanding;  

 

4. the new thinking tools students just learned are immediately used for calculations with 

larger numbers, helping students to solve new kinds of problems.  

 

Students can appreciate the significance of these tools and also get a chance to use them.  
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There is one more interesting aspect that deserves mention. Although the task of the lesson is 

to introduce the commutative law of addition from its title ―Interchanging Addends‖ to the end, 

in the statement ―A sum does not change if the addends are interchanged‖ the term 

―commutative law of addition‖ never appears. We can see that the lesson is designed to be 

intellectually honest but also considerate of learners by not containing anything superfluous. 

These principles, to efficiently utilize the knowledge that students already have, and to be 

intellectually honest and at the same time considerate of learners, occur in every lesson that 

introduces a new concept.  

 

Subtraction as the inverse operation of addition 

 

Subtraction as the inverse operation of addition is another thinking tool used at the stage of 

―addition and subtraction with sums and minuends between 6 and 9.‖ This concept is 

introduced in the lesson entitled ―How to Find an Unknown Addend.‖ 

 

 
The quantities used in the section that introduces the new concept are the numbers from the 

first stage. The three pictures are like three cartoon panels. At the top are five jars in a 

cupboard whose doors are open: three at left and two on the right. This picture illustrates the 

equation ―3 + 2 = 5.‖ In the next picture, the lefthand cupboard door is closed, hiding the three 

jars. Only two of the five jars can be seen. This picture illustrates the equation ―5 − 3 = 2.‖ The 

bottom picture shows the left door open and the right door closed, hiding two jars and 

illustrating ―5 − 2 = 3.‖  

Figure 7. (Moro et al., 1980/1992, p. 55) 
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The quantity of five jars and the arrangement of the jars in the same in all three pictures. The 

only change in the pictures is the closing of different doors. The equation, however, changes 

from an addition equation to two subtraction equations. The changes in the three pictures and 

their accompanying equations reveal for students the relationship between addition and 

subtraction—addition is to find the sum of two known addends and subtraction is to find an 

unknown addend when the sum and one addend are known.  

 

Because subtraction, the inverse operation of addition, is to find an unknown addend, the result 

of subtraction can be extrapolated from knowledge of addition, which is easier to master. 

When seeing a subtraction, and not knowing the solution, one only needs to think ―What 

number when added to the subtrahend yields the difference?‖ As illustrated in the lesson, if one 

knows ―3 + 2 = 5,‖ then one can extrapolate: 5 – 3 certainly must be 2 and 5 – 2 certainly must 

be 3.  

 

The three groups of problems in the exercise section are to help students deepen their 

understanding of the concept and at the same time learn to use the thinking tool just learned. 

The first group of problems has four subgroups. The first subgroup presents an additional 

equation with sum: 4 + 2 = 6.  From this equation, with the concept of subtraction as the 

inverse operation of addition just learned, students can extrapolate the answer of the two 

problems under it: 6 − 2 = ? and 6 − 4 = ? The second subgroup presents an addition. Students 

are supposed to find the sum. Based on the addition equation, students can fill in the boxes to 

create subtraction equations. The third subgroup presents an addition with small numbers ―1 + 

2.‖ Students are supposed to find the answer, then create two subtraction equations on their 

own. The fourth subgroup presents a more difficult addition ―2 + 5.‖ Students again create two 

subtraction equations. The difficulty of the problems increases from subgroup to subgroup, but 

each subgroup prepares students for the next one by deepening their understanding of the 

relationship between subtraction and addition.  

 

The second group of problems are pictorial problems about finding an unknown addend. Both 

problems involve two different types of objects, illustrating the sum of two numbers. The sum 

is represented as a number. One addend is clearly represented and the other is not. Each 

problem involves the same sum, but a different known addend. The problem on the left has two 

cups and the problem on the right has four spoons. As with the word problems, to solve a 

pictorial problem, students are supposed to first compose an equation corresponding to the 

problem, and then find the solution of the equation. The content of this lesson allows students 

to practice how to compose a subtraction equation to find the addends that are not clearly 

represented in the pictures. 

 

The third group of exercises is composed of four subgroups of computations. The first three 

subgroups allow students to use the concept of inverse operation to find the solutions. The last 

subgroup is multi-step operations which prepares students to learn the associative law.    

 

After this lesson, there are six groups of problems, making 36 problems in all, allowing 

students to practice using extrapolation to find a subtraction from a known addition.  
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Again, although the concept introduced in the lesson is subtraction as the inverse operation of 

addition, the term ―inverse operation‖ did not occur in the lesson. In the title of the lesson, 

―How to find an unknown addend‖ has only one unfamiliar term ―unknown.‖ This wording 

seems also to reflect the principle of being considerate of learners by not containing anything 

superfluous. 

 

Compensation law 

 

The two basic quantitative relationships in elementary mathematics, the sum of two numbers 

and the product of two numbers both involve three quantities. Any three quantities that are 

related show the following pattern: if one quantity remains unchanged, the change in the other 

quantity will be related. For example, the sum 2 and 3 is 5. If the sum 5 remains unchanged, 

then if the first addend 3 increases, then the second addend 2 must decrease by the same 

amount. Otherwise, the quantities do not maintain the same relationship. This is the law of 

compensation. There are corresponding compensation laws for subtraction and division, the 

inverse operations for addition and multiplication. Many computations can be made easier by 

use of the compensation laws.
x
  

 

In the Russian first grade textbook, I did not find examples of how to introduce the 

compensation law to young students. In a Chinese first grade classroom, I observed a teacher 

leading her students ―to find the patterns‖—the patterns of the change of quantities in addition 

and subtraction equations. The teacher came to the classroom with three small blackboards, 

each with a group of five equations. The bottom two equations of each group were covered by 

a piece of paper so that students couldn’t see them. During the lesson, the teacher took out the 

first small board and led students to ―find a pattern‖ among the three top equations. After an 

active observation and discussion students noticed the pattern: in these equations, going from 

top to bottom, the first addend decreases by 1 every time, the second addend increases by 1 

every time, the sum is unchanged. Going from bottom to top, the first addend increases by 1 

every time, the second addend decreases by 1 every time, the sum is still unchanged. They also 

found that between first and third equation, the change range is 2, but the sum is also 

unchanged. Then the teacher removed the covering paper and students saw the last two 

equations, each with a blank box. They immediately figured out what numbers should go in 

these boxes. In the same manner, the class examined and discussed the other two small 

blackboards and learned the other two patterns: ―One addend increases, the sum increases 

correspondingly‖ and ―Subtrahend increases, difference decreases correspondingly.‖ 

 

 
In all of the examples above, students can observe which quantity is unchanged, which 

quantities change, and the pattern of change. Once they find the pattern of change, they can fill 

in the blanks and use the pattern in calculations with other numbers.   

Figure 8. Leading students to notice the compensation law 
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Associative law and single-place addition with sums from 11 to 18 

 

The associative law is very important for helping students to understand addition with 

composing and subtraction with decomposing. It is also an important thinking tool for 

extrapolation at this stage. The textbook uses four lessons to introduce the associative law for 

addition and its application to subtraction: “Adding a Number to a Sum” (p. 106), 

“Subtracting a Number from a Sum” (p. 113), “Adding a Sum to a Number” (p. 125), 

“Subtracting a Sum from a Number” (p. 142).
xi

 This arrangement takes care of different 

ways in which the associative law is used, beginning with topics that are easy for students and 

progressing to more difficult ones. The structure of these four lessons is similar: a section that 

introduces the new concept, composed of three lines of cartoon, each with three panels 

accompanied by the equations they illustrate. The cartoon topic for addition is birds on a tree 

and the topic for subtraction is fish in a tank. The exercises of the lesson are groups of 

calculations that ask students to solve each problem in three different ways. Because adding a 

sum to a number is key to helping students understand the rationale for addition with 

composing, the lesson on “Adding a Sum to a Number” will be used as an example.  

 

 
Figure 9. (Moro et al., 1980/1992, p. 125) 
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The title of the lesson, “Adding a Sum to a Number,” is represented by the expression 

4 + (2 + 1)—adding the sum of 2 and 1 to 4. Again, we see that when a thinking tool is 

introduced, the numbers used are those of an earlier stage, already mastered by students. The 

pictures accompanied by small numbers will allow students to focus on the concept without a 

cognitive load induced from calculation.  

 

The three lines of cartoons seem to tell three different stories. The beginning and end of the 

three stories are the same, but the second panels are all different. The beginning shows 4 birds 

on a tree branch and 3 birds flying, 2 in front and 1 behind. This illustrates the expression 

4 + (2 + 1).  

 

The second panel of the first story still shows 3 birds flying, but they are now all in one line, 

and seem to be arriving at the branch at the same time to join the 4 birds. The expression under 

the panel is 4 + 3.  

 

The second panel of the second story shows the 3 birds in the same configuration as at the 

beginning, 2 in front, 1 behind. It seems as if the first 2 birds will join the 4 on the branch 

sooner than the last bird. It illustrates (4 + 2) + 1. 

 

The second panel of the third story shows the 3 flying in a different configuration, 1 is front 

and 2 are behind. It seems as if the first bird will join the 4 on the branch sooner than the 2 

birds behind. The panel illustrates (4 + 1) + 2. 

 

The three stories end in the same way, 7 birds sit on the branch. These three stories reveal that 

starting from the same expression, 4 + (2 + 1), one may go through three different 

computational processes, but end with the same result.  

 

4 + ( 2 + 1) = 4 + 3 = 7 

 

4 + ( 2 + 1) = ( 4 + 2 ) + 1 = 6 + 1 = 7 

 

4 + ( 2 + 1) = ( 4 + 1 ) + 2 = 5 + 2 = 7 

 

The section of exercises is a group of problems that involve adding a sum to a number. 

Students are supposed to solve with each with three different approaches. The numbers used 

are from the second stage, no composing is involved.  

 

A sum can be added to a number in different ways: the entire sum can be added to the number 

at once, or the sum can be added addend by addend. Learning these ways to add a sum to a 

number prepares students to learn 1-place addition with sums from 11 to 18 as illustrated in the 

following lesson.  
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Please notice that the lesson for ―1-place addition with sums from 11 to 18‖ uses the 

expression 9 + 5 as its title.  

 

Under the title ―9 + 5‖ is a frame broken into two lines, each with 10 blocks. In the first line, 

the 9 black semi-circles illustrate the first addend 9. The 5 gray semi-circles illustrate the 

second addend broken into two parts 1 and 4. The 1 appears on the first line, joining the black 

semi-circle, and filling the 10 blocks. The other 2 appears on the second line.  

 

The corresponding expression is: 

 

9 + 5 = 9 + ( 1 + 4 ) = ( 9 + 1 ) + 4 = 14 

 

The illustration in the frame, accompanied by the expression explains the rationale for 1-place 

addition with sums of 11 to 18.  

 

When two 1-place numbers are added, if the sum is larger than 10, an addend needs to be 

separated into two parts. One part joins the other addend to form a ten, which corresponds to 

the 1 at the tens place of the sum. The other part corresponds to the numeral at the ones place. 

The base-ten positional notation that we use requires this. The associative law allows this to be 

done.   

 

The key skill to implement this rationale is to decide which of the two addends to separate, and 

how to separate. The more reasonable approach is to separate the smaller of the two addends 

because it is easier to ―see‖ the quantity that composes a ten with a larger number, and thus is 

easier to decide how to separate the other addend.  

 

To let students understand this rationale and acquire skill in implementing it, ―the computation 

of adding a number to 9‖ serves as the best example. Because 9 is the digit closest to 10, it is 

easiest for students to ―see‖ that the number needed for joining 9 to make a ten is 1. On the 

other hand, 1 is the number that when taken from another number has the easiest difference to 

determine. Therefore, in terms of intellectual load, the tasks of adding a number to 9 are the 

easiest of all the 1-place addition computations with sum between 11 and 18. Compare the two 

additions: 9 + 6 and 7 + 5. For the first, we need a 1 to join 9 in order to make a 10. We 

subtract 1 from 6 and get 5, then to combine 10 and 5 into the sum 15. Although each addend 

Figure 10. ―1-place addition with sums from 11–18‖ (Moro et al., 1980/1992, p. 138) 
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of 9 + 5 is larger, this computation is easier than 7 + 5. For that, we need 3 to join 7 to make a 

10. We subtract 3 from 5 and get 2, then combine 10 and 2 to get the sum 12. Now we can 

notice that to use ―9 + 5‖ as the title of the lesson is very thoughtful: with task of adding a 

number to 9, students get exposed to the ―core technique‖ for 1-place additions with sums of 

11 to 18 with least intellectual load. Once the computation of ―9 + 5‖ makes sense for students, 

it can serve as a template for addition computations with other numbers in this stage.  

 

After analyzing the rationale of computing 9 + 5, the lesson presents another calculation, 8 + 3, 

using the same frame accompanied by the analogous expression to display the approach to 

calculation. In terms of difficulty, adding a number to 8 is the least increase from adding a 

number to 9. The contrast between 9 + 5 and 8 + 3 is a good way to help students find the 

pattern to use for calculating 1-place additions with composing. Adding a number to 9 is 10 

plus the number minus 1, adding a number to 8 is 10 plus the number minus 2, and so on.  

 

The four problems in the exercise section, besides requiring students to find the solution, also 

require them to explain the rationale. The first two problems, 9 + 7 and 8 + 5, are closely 

related to those shown earlier and can solved with a small variation of the same approach. The 

other two problems, 7 + 6 and 6 + 5, require students to extend what they have learned to new 

situations. In fact, the four situations, adding a number to 9, adding a number to 8, adding a 

number to 7, and adding a number to 6, take care of all the situations encountered in 1-place 

addition with sums between 11 and 18.
xii

 The pages that follow this lesson contain more 

exercises involving these situations.  

 

―1-place addition and subtraction with sums and minuends between 11 and 18‖ is the last stage 

of 1-place addition and subtraction. It appears that only two thinking tools are needed to 

explain the rationale of the approach: base-10 positional notation and associative law of 

addition. However, to use these two thinking tools to extrapolate fluently solutions at this stage 

requires a particular foundation. This foundation has two features: 

 

 To master the combinations of 2 to 10 and the corresponding addition and subtraction.  

 

 To have the habit of extrapolation and know how to use thinking tools such as 

commutative law, inverse operation, etc. 

 

Fortunately, the instruction in the first three stages prepares students to have this foundation. 

Of the nine steps shown in Figure 3, students already have reached the seventh step before they 

begin the fourth stage. Only two steps are left. The instruction of extrapolation started with the 

capacity to mentally calculate with small numbers, that students knew before they began 

school. At the end of the fourth stage, students have developed the capacity to mentally 

calculate 1-place addition and subtraction. Moreover, they are led to build a foundation for 

future mathematics learning by acquiring thinking tools in nine steps.  
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Thinking tools vs counters or “number facts” 

 

These examples give a brief, but comprehensive picture of how the thinking tools needed for 

extrapolation are introduced to first graders. Between the extrapolation approach and the 

counting and memorizing approaches familiar to US readers, there are some similarities and 

some differences.   

 

On the one hand, the extrapolation approach is similar to the memorizing facts approach—both 

have a significant amount of written exercises. However, the memorizing facts approach 

emphasizes students’ memorizing of facts that they do not participate in developing. The 

extrapolation approach encourages and helps students to figure out the solutions of additions 

and subtractions. Students’ intellectual activities reinforce the results of calculations, and 

develop their capacity for mental calculation. In fact, when we say ―calculating,‖ usually this 

includes thinking. The extrapolation approach intends to teach first graders how to calculate by 

thinking.   

 

On the other hand, the extrapolation approach is similar to the counting approach—both draw 

on the computational capabilities that students bring to school and encourage students to find 

solutions on their own. However, the counting approach encourages students to continue using 

fingers or other counters, without specific attention to mental calculation. In contrast, the 

extrapolation approach draws on students’ primary concepts of quantities and gradually 

introduces mathematical thinking tools. With these thinking tools, students’ ability to mentally 

calculate 1-place additions and subtractions is developed, step by step. Except for small 

numbers such as those corresponding to perceivable quantities that children already know 

before school, 1-place addition and subtraction is beyond most students at the beginning of first 

grade. The essential difference between the extrapolation approach and the counting approach 

occurs when students reach the limit of their computational capacity. One approach relies on 

physical objects to expand students’ computation abilities and one relies on mental thinking 

tools to expand abilities. The extrapolation approach does not encourage students to use fingers. 

Some Chinese elementary teachers use the metaphor of weaning to explain that students have 

to give up using fingers so that they can focus on developing mental computational capability. 

Indeed, the instruction for extrapolation needs more carefully designed lessons and exercises to 

ensure that students cross the gap between the habit of counting fingers and the ability to 

mentally calculate 1-place additions and subtractions.  

 

This kind of care in instructional design is illustrated by the lesson examples from the Russian 

textbook. Each learning task in each lesson presents only a small challenge, although its final 

goal is very demanding. Students are intended to acquire the capacity to calculate mentally—

not only within 20, but within 100. In each learning task, the textbook shows remarkable 

consideration of students’ intellectual load. Every time when a new concept is introduced, the 

load in calculation is reduced. The textbook contains a few thousand exercises, which are 

connected problem by problem, and group by group. With these deliberate connections, 

students are led to develop their computational capacity by meeting many small challenges.    

 



Draft, June 21, 2011   26 

 

 

Three questions for further consideration 

At the beginning of this article, I noted the importance of mental calculation of 1-place 

addition and subtraction in elementary mathematics learning and suggested that US elementary 

mathematics education might reflect on this issue. In this article, I described a kind of 

instruction unfamiliar to US readers—using thinking tools to extrapolate unknown from known. 

In conclusion, I would like to raise three questions.  

 

Question 1: Is calculation necessarily mechanical without requiring thought? 

 

During recent decades in US mathematics education, calculation has been viewed as 

unimportant. Calculation has been viewed as related to mechanical, rote learning and separate 

from advanced thinking, conceptual understanding, and problem solving.  

 

Now, can what has been described in this article serve as a counterexample, showing that 

calculation is not necessarily mechanical, and not necessarily the product of rote learning, but 

can involve intellectual activity?  

 

If calculation doesn’t have to be mechanical but can be conducted as an intellectual activity, 

then how did this misunderstanding develop?   

 

Question 2: How to deal with the knowledge children bring to school? 

 

When first graders start school, they have certain mathematical capabilities. They bring some 

mathematical knowledge to school. In terms of 1-place addition and subtraction, their 

computational skills include: 1) mental calculation with small quantities such as perceivable 

quantities, 2) the ability to use fingers to calculate with quantities larger than those they can 

compute mentally. Children use both of these skills and both are equally important to them.  

 

But, what is interesting is that the counting approach and extrapolation approach both draw 

on knowledge students already have, but each draws only on one kind of skill.  

 

The counting approach draws on students’ skill in computing with fingers or other counters.  

The task of instruction is to help students to replace their initial counting strategies with more 

advanced ones, so that students can find the solutions for additions and subtractions of 1-place 

numbers efficiently and proficiently. 

 

The extrapolation approach draws on children’s capacity for mental calculation with small 

quantities. The mastery of perceivable and other small quantities reflects their concepts of 

quantities—the magnitudes of quantities and the relationships of quantities. Based on this 

foundation, the extrapolation approach introduces thinking tools to children step-by-step, 

leading them to find the unknown from the known, using these thinking tools, gradually 

expanding their capability for mental calculation, and eventually developing their capability to 

fluently conduct mental 1-place addition and subtraction.  

 

In terms of how to deal with the mathematical knowledge that students bring to school, what 

would we like to accomplish with it? The counting approach and extrapolation approach have 
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different goals. The counting approach aims to retain ―children’s mathematics,‖ encouraging 

and helping students to solve computational problems with their ―own methods.‖ The 

extrapolation approach aims to connect children to formal mathematics from the beginning: to 

learn to calculate with the methods of the discipline. Because their aims differ, the two 

approaches attend to different things, adopt different instructional methods, and achieve 

different results.  

 

The two approaches also differ with respect to students’ intellectual load. The intellectual load 

of the counting approach is no difficulties, no accumulation. The development of the different 

counting strategies can occur without instruction and the transition from lower-level strategies 

to more advanced ones occurs without difficulty. When a more efficient strategy replaces a less 

efficient strategy, the previous strategy becomes useless. Thus, students do not accumulate 

these strategies. For example, when a student replaces counting all by counting from first, he or 

she will feel that computing with the new strategy is easier and more efficient. Once the old 

strategy of counting all is replaced, it is no longer meaningful.  

 

The intellectual load of extrapolation approach is low difficulty with accumulation. Each step 

has some difficulties, but these are not so large that students can’t overcome them. Each new 

thinking tool is introduced sequentially, but an one is not replaced by a later one. Each 

continues to play a role, sometimes in cooperation with others. For example, during the stage 

of ―addition and subtraction with sum and minuend from 6 to 9,‖ the commutative law, inverse 

operations, and compensation law are introduced. The earlier thinking tools are still useful and 

are used at this and later stages, and throughout elementary mathematics learning.  

 

As they learn counting strategies, students move ahead and learn how to efficiently get 

solutions for 1-place additions and subtractions. However, their mental calculation capability 

and capacity for abstract thinking does not develop significantly. With the extrapolation 

approach, through learning and using the thinking tools, students not only develop mental 

calculation ability, but also improve their abstract thinking.  

 

When children become first graders, how should we deal with the knowledge that they bring to 

school? Let them retain and fully develop ―children’s mathematics‖ or put them on a road 

designed to lead them away from ―children’s mathematics‖ to a closer connection with formal 

mathematics? If we let ―children’s mathematics‖ develop fully, what will the outcome be? Can 

it naturally develop into formal mathematical knowledge? The computational capabilities of 

Brazilian child candy sellers impressed the field of mathematics education, but are those 

capacities the same as knowledge of the discipline of mathematics? Can it naturally transfer to 

more formal mathematical knowledge? And can US young people automatically develop their 

computational abilities to such a level? Even if they can, is that what we want?  

 

Question 3: Is there any real “children’s mathematics”? 

 

In present-day elementary mathematics education, the mathematical knowledge that children 

bring to school usually receives a significant amount of attention. The existence of ―children’s 

mathematics‖ is also the theoretical foundation for the counting approach. But, what is the 
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mathematical knowledge that children bring to school? How long is the mathematics that 

children bring to school unaffected by schooling? Is there any pure ―children’s arithmetic‖?   

 

The concept of ―children’s mathematics‖ can be traced to Piaget’s research on the development 

of children’s mathematical capacities. In the late 1960s, Piaget’s work was welcomed by the 

field of mathematics education and terms such as ―children’s mathematics‖ and ―children’s 

arithmetic‖ became more frequent in mathematics education research. However, in doing so 

both authors and audience seem to have ignored an important fact: except for the short period 

of infancy, pure children’s arithmetic does not exist.
xiii

  

 

The truth is: children’s cognitive development with respect to mathematics or any other 

cultural artifact occurs in an educational context—the cognitive environments created by 

adults. Adults create two such environments for children’s intellectual development: informal 

and formal education. A child’s cognitive development is the product of the interaction 

between natural endowment and cognitive environments.  

 

In mathematics, for example, before attending school, children’s cognitive environments 

include informal education. In everyday life, the adults who care for them conduct oral 

―mathematics education‖ spontaneously. In her work, Children's Counting and Concepts of 

Number (1988), the mathematics education researcher Karen Fuson recorded examples of her 

own two daughters’ development of mathematical knowledge in a diary, and summarized other 

relevant research on this topic. All the examples in the book involve interactions between 

children and adults. Whether or not they were highly educated, all the adults strategically 

created cognitive environments to develop children’s concept of numbers.
xiv

 In contrast, 

imagine that a child has no contact with any people or a group of children has no contact with 

adult society. Can these children develop the ―children’s mathematics‖ or ―children’s 

arithmetic‖ that researchers have observed? The answer is likely to be no. What children bring 

to school is not ―children’s mathematics‖ created only by children, but the results of interaction 

between natural endowment and cognitive environments that include informal education.  

 

After entering school, children’s cognitive development acquires an additional arena—the 

cognitive environment of formal education. For thousands of years of human civilization, 

formal education was generally for the privileged few. Universal formal education, even in 

developed countries like the US, is only a little over a hundred years old. In general, it occurs 

in a special place with professional teachers, during a fixed time, and relies heavily on texts. 

Once formal education starts, it begins an interaction between children’s cognition and a new 

cognitive environment. Thus, if we say that ―children’s mathematics‖ is the mathematical 

knowledge that children bring to school as a result of informal education, theoretically, this is 

only the situation on their first day of school. As soon as they receive formal mathematics 

education in school, children’s mathematical knowledge becomes the result of an interaction of 

their prior knowledge, the environment of school mathematics education, and their out-of-

school environment. Different school mathematics education environments may have different 

impacts on students’ mathematical knowledge. For example, suppose two students have similar 

mathematical knowledge before attending school. One studies in an environment that promotes 

the counting approach and one studies in an environment that promotes the extrapolation 
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approach. Both learn 1-place addition and subtraction, but after a few weeks their mathematical 

knowledge and skill are likely to have obvious differences.  

 

Figure 12 illustrates the conceptual framework just discussed (each box separated by a dotted 

line represents one year). Piaget’s stages of cognitive development are shown as a reference in 

the figure.  
 

 

Figure 11. 

Piaget’s stages of cognitive development for ages 0 to 15 

The point when an infant is born 

 
The point when a baby understands language 

 

The point when a child goes to elementary school  

 

             Non-formal Education 

 

           Formal Education 

 

Sensorimotor 
stage 
(0-2) 

 

Pre-operational stage 

(2-7) 

Formal operational 
stage 

(12-15) 

 

Concrete operational stage 

(7-12) 

Cognitive development of a child nurtured and stimulated by social knowledge 
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Before going to school, children’s cognitive environment is mainly informal education. After 

beginning school, formal education becomes their main cognitive environment, but informal 

education may still have an impact. 

Piaget may have been the first researcher to have systematically studied the development of 

children’s mathematical knowledge and to establish a theory of their development. However, 

his stages for children’s cognitive development from birth to age 15 do not reflect the impact 

of an educational environment created by adults. This omission was an inevitable result of his 

focus on genetic epistemology.  

 

As we know, Piaget devoted most of his career to the establishment of genetic epistemology, a 

field that concerns how prehistoric humans developed knowledge. In the late 1960s, toward the 

end of his life, Piaget summarized the theory he had established: 

 

Genetic epistemology attempts to explain knowledge, and in particular 

scientific knowledge, on the basis of its history, its sociogenesis, and 

especially the psychological origins of the notions and operations upon 

which it is based. (Piaget, 1968/1970, p. 1) 

 

The goal of genetic epistemology is to explain the origin of knowledge of prehistoric 

humans. However, today how can we know the origin of prehistoric humans’ 

knowledge? Piaget had a unique idea: 

 

The fundamental hypothesis of genetic epistemology is that there is a 

parallelism between the progress [that our species] made in the logical and 

rational organization of knowledge and the corresponding formative 

psychological processes [of a child]. (Piaget, 1969, p. 4) 

 

In the late nineteenth century, the German biologist Ernst Haeckel developed the notion that 

the development of a human embryo repeats the evolution of the human species.
xv

 This 

recapitulation theory became popular in the Western world for several decades. The 

fundamental hypothesis of genetic epistemology was as Piaget described it—the cognitive 

development of individual children repeats the evolution of human knowledge, extending 

Haeckel’s theory. With this extension, Piaget came up with an ambitious idea:  

 

With this hypothesis, the most fruitful and the most obvious field of study [of 

epistemology] would be the reconstituting of human history—the history of 

human thinking in prehistoric man. (Piaget, 1969, p. 4) 

 

Because the psychological development of an individual child’s cognition recapitulates the 

corresponding historical development, then by studying children, the development of human 

knowledge can be reconstructed:  

 

Unfortunately, we are not very well informed in the psychology of primitive 

man, but there are children all around us. It is in studying children that we have 

the best chance of studying the development of logical knowledge, 

mathematical knowledge, and physical knowledge. (Piaget, 1969, p. 4) 
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After expanding recapitulation theory based on embryology, Piaget found an approach to 

reconstructing ―the development of logical knowledge, mathematical knowledge, and physical 

knowledge‖ of prehistoric humans, by studying children. This underlies the methodological 

approach of genetic epistemology and was the reason why Piaget studied children’s cognitive 

development.  

 

Now we can explain why in Piaget’s research on the development of children’s mathematical 

knowledge, such an important factor—the interaction between children and the educational 

environment created by adults—was ignored. For Piaget, children’s cognitive development 

was not the main focus, but a way to answer questions of epistemology. He wanted to 

reconstruct the cognitive development of prehistoric humans by studying children’s cognitive 

development. His attention to children’s development was determined by the goal of his 

research—as prehistoric human knowledge developed, there were no interactions between 

prehistoric humans and ―adult humans.‖ In Piaget’s conceptual framework, the development of 

children’s mathematical knowledge occurs over time as measured by children’s ages, and is a 

result of children’s own activities and communication with other children. This matches the 

situation of the development of prehistoric humans that he wanted to reconstruct, but does not 

correspond to the situation in which present-day children’s cognitive development occurs.  

 

To criticize genetic epistemology is not the aim of this article. What I would like to point out 

here is that the field of elementary mathematics education adopted Piaget’s notion of a 

children’s mathematics. But, in fact, children’s mathematics does not exist.  

 

As teachers, authors of textbooks, and adult participants in elementary mathematics education, 

we long to know how students think about mathematics, but we also need to clearly notice that 

there is no general ―how students think about mathematics.‖ ―How students think about 

mathematics‖ is always the result of the interaction between a certain student at a certain time 

in a certain educational environment.  

 

When the environments are different, the results of interaction may be different. The 

environments where children learn mathematics before going to school are mainly created by 

their caregivers. After beginning school, the main environment for a child to learn mathematics 

is generally the classroom. The environment is co-created by teaching materials (standards, 

textbooks, etc.) and the teacher’s instruction. Differences in family environment may result in 

differences in children’s mathematical knowledge before the children begin school. 

Differences in formal education may also result in differences in children’s mathematical 

knowledge. 

 

To conclude, it is crucial that ―children’s mathematics‖ not be considered to be the same as the 

mathematical knowledge that students already have (including mathematical concepts, 

computational skills, attitudes, and ways of thinking). Although the former does not exist, the 

latter is an important foundation for instruction. The label ―children’s mathematics‖ suggests 

that there is a way that children think about mathematics which is independent from the impact 

of adults. The knowledge students already have, however, is the product of interaction between 

students and their previous education environment. As teachers, before we begin to teach our 
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students, we need to know what they know, how that knowledge was shaped, and how it is 

related to the knowledge that we are to teach. We also need to be clearly aware that once our 

instruction starts, it plays a significant role in shaping our students’ mathematical knowledge. It 

forms the foundation for their further learning, as well as their attitudes and dispositions toward 

mathematics. 

 

Concluding remarks 

 

At the beginning of the article, I mentioned that 1-place addition and subtraction, as a part of 

―numerals and addition and subtraction within 20,‖ plays a significant role in laying down the 

first cornerstone of the foundation for students to learn mathematics. I also pointed out that 

there are different approaches to teaching it and described for US readers the extrapolation 

approach used in China. Interestingly, without this comparison and contrast, it appears to be 

hard for people involved with mathematics education in both countries to notice its 

characteristics. Those involved with elementary mathematics education in the US may not 

imagine that there are other ways to teach 1-place addition and subtraction besides ―counting‖ 

and ―memorizing facts.‖ Similarly, for Chinese elementary mathematics teachers, asking 

students to use their little minds is taken for granted. No one would make an effort to consider 

the essence of this approach and to give it a name, as I did in writing this article. Similarly, no 

one is likely to notice that properties such as the commutative law, which help students to ―use 

their minds,‖ play the role of ―thinking tools‖ for extrapolation. 

 

The 1-place addition and subtraction just discussed is merely one part in the first knowledge 

chunk of elementary mathematics. Nevertheless, the ways it is approached in some sense 

represent the different philosophies of two whole systems of elementary mathematics 

education. The high scores in mathematics of Shanghai students during the latest Programme 

for International Student Assessment (PISA) called more US attention to mathematics 

education in China. Yet Americans may not know that the mathematics Curriculum Standards 

published by the Chinese Department of Education in 2001 were significantly influenced by 

the US National Council of Teachers of Mathematics Standards.  It is my wish that readers in 

both countries will find this article beneficial in reflecting on mathematics education.     

 



Draft, June 21, 2011   33 

 

 

References 

Cajori, F. (1993). A history of mathematical notations. New York: Dover. (Original 

work published in two volumes in 1928 and 1929) 

 

Carpenter, T. C., Fennema, E., Franke, M., Levi, L, & Empson, F. (1999). Children’s 

mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann. 

 

Chapin, S., & Johnson, A. (2006). Math matters (2nd ed.). Sausalito, CA: Math 

Solutions Publications. 

 

Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford 

University Press.  

 

Fuson, K. C. (1988). Children's counting and concepts of number. New York: Springer-Verlag. 

 

Moro, M. I., Bantova, M. A., & Beltyukova, G. V. (1992). Russian grade 1 mathematics (9th 

Ed., R. H. Silverman, Trans.). Chicago: University of Chicago School Mathematics 

Project. (Original work published 1980) 

 

Piaget, J. (1970). Genetic epistemology (E. Duckworth, trans.). Columbia University 

Press. (Comprises the four Woodbridge Lecture delivered by Jean Piaget at 

Columbia University in October, 1968) 

 

Piaget, J. (1969). Genetic epistemology. Columbia Forum, 12(3), 4–11. 

 

Smith, D. (1925/1953). History of mathematics, Vol. II. Dover Publications: New York. 



Draft, June 21, 2011   34 

 

 

 

                                                 
i
 A summary of the research base for the counting approach and references to detailed syntheses are given in the 

appendix of Children’s Mathematics: Cognitively Guided Instruction (Carpenter et al., 1999).  

 
ii
 See Dehaene (1997) The Number Sense, pp. 126–129. Dehaene notes that associative memory frequently causes 

memorized multiplication facts to interfere with memorized addition facts. 

 
iii

 After comparing how 1-place addition and subtraction was taught in China and in the US, I decided to give the 

Chinese approach the name ―extrapolation.‖ Chinese elementary teachers, however, may feel that this approach is 

not ususual, and take for granted that it is the only way to teach addition and subtraction. 
iv
Dehaene (1997, p. 65) comments:  

 

Georges Ifrah (1994), in his comprehensive book on the history of numerical notations, shows that in all 

civilizations, the first three numbers were initially denoted by repeatedly writing down the symbol for ―one‖ 

as many times as necessary, exactly as Roman numerals. And most, if not all civilizations stopped using this 

system beyond the number 3. . . . Even our own Arabic digits, although they seem arbitrary, derive from the 

same principle. Our digit 1 is a single bar, and our digits 2 and 3 actually derive from two or three horizontal 

bars that became tied together when they were deformed by being handwritten. Only the Arabic digits 4 and 

beyond can thus be considered as genuinely arbitrary. 

 
v
 Between 2000 and 2005, I tested students in five different kindergartens in California. One in Palo Alto, two in 

East PA, one in Sacramento, one in Mountain View. Among them, the only ―regular‖ school was in Palo Alto, 

students at the other four schools, more than half came from non-English speaking low-income parents without 

college education. Many of these children didn’t speak English and were not able to count in English. I held a 

random number of small plastic cubes in my fist, inviting students to play a game with me. When I opened my fist, 

they must immediately say how many cubes were on my palm, without counting. They didn’t need to use English, 

but were allowed to use their own language (Spanish or Tongan). I told them that if anyone played with me five 

times and got all the answers correct then he or she would win and get a picture of themselves as a prize (in fact, if 

they got a wrong answer, I would close my fist immediately and not let them know if they made a mistake, and 

continue for five rounds of the game, then take their picture). There were more than a hundred children who 

participated in this game. The result was that when I had 1, 2, or 3 cubes in my hand, these children never made a 

mistake. But when there were 4 cubes, they started to make mistakes. When the number increased to 5 or 6, there 

were much more errors and I could feel that they were guessing. I had encountered a situation where one child 

could not speak numbers but indicated the number of cubes in my hand by showing the appropriate number of 

fingers on his hand. When there were 2 cubes, he showed me 2 fingers; and showed me 3 fingers when I had 3 

cubes in my hand.  

 
vi
 Concrete numbers are the numbers related to objects, for example, four apples, five candies are all concrete 

numbers. The numbers unconnected with particular objects, such as 4 and 5, are called abstract numbers. Smith 

emphasized that distinguishing between concrete numbers and abstract numbers is very important for elementary 

mathematics education. In fact, parents and teachers may notice that in early elementary grades, computing with 

concrete numbers is significantly easier for students (1925, pp. 11–12). 

 
vii

 For example, the Chinese elementary curriculum used to allocate about 20 weeks in the first semester for 

understanding the numerals within 20 and addition and subtraction within 20. In this period, besides developing 

mental calculation capability, students establish the concept of the sum of two numbers and, based on this, the 

concepts of addition and subtraction.  

 
viii

 Details of this evolution are given in Florian Cajori’s History of Mathematical Notations, see, e.g., signs of 

addition and subtraction, pp. 229–250, signs of equality, pp. 297–309. Its section on use of arithmetic and 

algebraic notation by individual writers (pp. 71–229) illustrates the long evolution of arithmetic and algebraic 

syntax.  
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x
 In fact, the application of compensation law of multiplication to division is the key idea underlying the 

algorithms for the four operations with fractions.  

 
xi

 The associative law of addition expressed in words is ―A sum doesn’t depend on grouping of its addends,‖ 

expressed in letters, it is a + b + c = (a + b) + c = a + (b + c) = (a + c) + b. The rationale of addition with 

composing is when two 1-place numbers are added, if the sum is larger than 10, to express one of the addends as 

the sum of two addends, one of them should be able to make a ten with the first addend. Make a ten first, then add 

to the remainder of the addend. If  a + b>10, then  a + b = a + (c + d) = (a + c) + d; (b=c + d; a + c =10).  

 
xii

 Calculations that involve adding a number to 9 are not only easiest, but are the most frequent in the sums of the 

sums of this stage. Addition calculations with sums of 11 to 18 are based on 20 different pairs of numbers. Among 

these 20 pairs, eight of them, two-fifths of all the pairs, include 9. Six of the remaining pairs, three-tenths of the 

total, contain 8; four of the remaining pairs contain 7 and the last two pairs contain 6. The proportion is 4:3:2:1. 

 
xiii

 Some research on infants’ mathematics suggests that it is independent from adults’ impact.  For example, 

the research of Harvard University professor Karen Wynn finds that babies as young as four months “knew” 

1 + 1 = 2, that 1 + 1 = 1 and 1 + 1 =3 are both false, and that 1 + 2 = 3.  These findings, if they are robust (some 

researchers question this work), would imply that human babies are born knowing the quantities 1, 2, 3 and 

“1 + 1 = 2,” etc.  

xiv
 In summarizing research on this topic, Fuson noted three features: 

 

First, ―Mothers seem to use number words more with very young children and then decrease their use as the 

children begin to use number words more frequently.‖  

 

Second, mothers ―did not always just use the number word, but rather directed the child’s attention to the 

appropriate attributes of a situation. 

 

Third, after such an initial structuring, the mother might then continue to restructure the same situation into 

other uses in a sequential goal-directed fashion. . . . Mothers made judgments about what steps their child 

could carry out and then structured the steps into greater or lesser difficulty accordingly (Fuson, 1988, p. 16). 
 

xv
 Haeckel wrote a popular book, which supported his theory with scientific drawings showing human and other 

embryos passing through various stages of development. Questions about the accuracy of these drawings were 

raised soon after its publication in 1868. The theory generated interest among those concerned with social and 

educational issues in the late nineteenth century. The specific form given by Haeckel, that the embryo as it 

develops repeats the prior evolutionary stages of its species, slowly became discredited among biologists. 


